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Executive Summary 
Mortgage underwriting disparities for historically underserved groups remain essentially 
unchanged despite several decades of legislative and policy interventions to improve them. Now 
with artificial intelligence, including machine learning, poised to augment or take over decision 
making across a range of domains, including in housing and lending, many mortgage market 
participants and stakeholders are focused on the question of whether algorithmic systems will 
create, exacerbate, or ameliorate disparities for protected groups. One potentially positive 
development in recent years is the emergence of algorithmic fairness techniques which aim to 
do a better job of predicting outcomes for populations that are not well-represented in data and/or 
negatively impacted by historical biases that might be contained in data used to develop models. 
To date, most studies of algorithmic fairness techniques applied to consumer credit have shown 
an accuracy-fairness tradeoff, a concept that suggests an increase in positive outcomes for 
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protected groups comes at the expense of a model’s accuracy and consequently, in the view of 
some, at the expense of its profitability. In addition, many existing algorithmic fairness techniques 
rely on training methods that can be slow and unstable, which has tended to moderate their use 
in financial services. There are also concerns that some fairness techniques may result in 
increased fairness for some groups while decreasing fairness for others. 

The goal of this study therefore was to evaluate whether there are algorithmic methods — using 
standard machine learning training techniques — that make it possible to build mortgage 
underwriting and pricing models that increase fairness without sacrificing accuracy and, by 
extension, without sacrificing profitability or introducing a bias for certain groups. Employees 
from the National Fair Housing Alliance (NFHA)’s Responsible AI Lab partnered with data 
scientists from FairPlay, an algorithmic fairness company based in Los Angeles, to conduct a 
fairness optimization study to explore this question.  

NFHA's team members were pivotal in the successful execution of this project, dedicating 
substantial effort to the acquisition of vital data—a cornerstone of the research's feasibility. Their 
expertise was instrumental in developing and implementing robust systems for data 
management and security, ensuring the integrity and confidentiality of consumer information. 
Moreover, through meticulous data cleaning and analysis, they laid the groundwork for insightful 
research findings. Their comprehensive preparation and handling of the data were fundamental 
to the project's success. In addition, NFHA’s employees provisioned the cloud resources used to 
perform the study including AWS RDS instance, EC2 instance, and VPN access.  

When a task or result under discussion relates to model design, model development and model 
validation, “Project Team” means FairPlay’s team of data scientists. NFHA’s employees 
performed reviewer and project management roles while models were developed by FairPlay. As 
a reviewer, NFHA’s Purpose, Process and Monitoring (PPM)8 framework for algorithmic 
assessment was used to review the model source code and related documentations or 
mathematical formulations of the model constructs. 

The Project Team built mortgage underwriting and pricing models trained for fairness using a 
novel algorithmic fairness methodology, Distribution Matching (DM), wherein machine learning 
models are trained to ensure that their outputs for protected groups should closely mirror the 
distribution of outputs for a corresponding control group. By incorporating one or more disparity 
minimization terms into a standard machine learning loss function, DM treats differences in 
outcomes between protected and control classes as a form of model error which, when 
minimized, reduces the differences in model outputs between those groups. This model was 
validated by NFHA with data provided courtesy of CoreLogic®. 

 
8 Akinwumi, M., Rice, L., & Sharma, S. (2022). Purpose Process and Monitoring: A New Framework for 
Auditing Algorithmic Bias in Housing & Lending. National Fair Housing Alliance. Retrieved from 
https://nationalfairhousing.org/wp-content/uploads/2022/02/PPM_Framework_02_17_2022.pdf 
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The Project Team’s Preliminary Findings are that a DM-modified loss function can reduce the 
disparity of mortgage underwriting outcomes between Black and Hispanic applicants on the one 
hand and White, non-Hispanic applicants on the other, by upwards of 13 percent at the same rate 
of accuracy as models built using a standard loss function. Initial findings by the Project Team 
also suggest mortgage pricing disparities for Black and Hispanic borrowers could be reduced by 
upwards of 20 percent relative to White, non-Hispanic borrowers. 

The Project Team’s investigations and findings were limited by the absence of certain variables. 
For example, the Project Team did not have access to information about declined loans and loans 
that were approved but not taken by consumers. In addition, the data did not contain 
macroeconomic information, such as the prevailing 10-year U.S. Treasury bond rate at the time 
of loan origination, which is frequently used to set mortgage rates. 

Despite these limitations, the Project Team’s preliminary findings suggest that DM may be a 
viable pathway for integrating disparity minimization and other policy goals into algorithmic 
decision-making without sacrificing performance — an approach that aligns with emerging 
regulatory frameworks for artificial intelligence, as well as societal calls for less discriminatory 
housing and financial practices.  

To ground its findings, the Project Team recommends repeating this study with an enriched 
dataset which includes information about declined loans, approved loans not taken, additional 
data about applicants, and the prevailing macroeconomic conditions at the time of application.  
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 Introduction 
 

Problem of Discrimination in Mortgage Origination 
Disparities in mortgage underwriting and pricing outcomes have remained essentially unchanged 
for protected groups at least since 1990.9 Industry experts disagree over whether Artificial 
Intelligence (AI), including Machine Learning (ML), combined with Big Data, could improve 
outcomes in mortgage lending for protected groups. The emergence of algorithmic fairness 
techniques in recent years has only furthered this debate, with skeptics arguing that the increased 
“fairness” achieved by debiasing methods must come at the expense of model accuracy and 
therefore profitability, and/or at the expense of increasing bias for some groups. This study 
investigates whether there are AI techniques that can increase fairness without sacrificing 
accuracy and, if there are, whether such methods are viable for use in the mortgage industry. The 
preliminary results of the study find that Distribution Matching (DM), whereby AI models learn 
that the distribution of algorithmic outcomes for any one protected group should closely 
resemble the distribution of the corresponding control group, can increase the fairness of 
mortgage underwriting to protected groups without a functional diminution in accuracy. 

Literature Review 
There are, in general, three different kinds of disparity-reducing machine learning algorithms:10 
pre-processing algorithms, in which the inputs to the system are transformed to mitigate or 
eliminate disparity; in-processing algorithms, in which the ML model is trained to reduce disparity; 
and post-processing algorithms, in which the output of the system is modified in order to reduce 
disparity. This study focuses on in-processing algorithms. 

In-process techniques are proactive by design as they prioritize controlling the potential risk of 
biased outcomes, rather than delivering mitigations after an instance of unfairness. The following 
section will provide a closer overview of four related techniques — Prejudice Index Regularizer, 
Wasserstein Fairness, Counterfactual Fairness, and Fairness Though Awareness — that are open-
source and can be compared with the DM technique. The application of these methods is context 
dependent, but similarly utilized for mitigating algorithmic bias and fostering fairer solutions.    

Regardless of the sensitivity of the data, ML models can generate biased outcomes in myriad 
ways, including by associating seemingly discrete information with protected attributes. As a 
result, discriminatory outcomes may arise, disadvantaging one group over the other. To address 
this, Kamishima et al. proposed the Prejudice Index Regularizer (PIR) technique to enforce a 

 
9 https://www.usatoday.com/story/money/personalfinance/real-estate/2022/11/23/interest-rates-rise-
mortgage-fairness-crisis/10748394002/?gnt-cfr=1 
10 https://dl.acm.org/doi/10.1145/3551390 
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classifier’s independence from sensitive information.11 Methodologically, PIR functions by 
penalizing predictions made relying on sensitive attributes during the training process. In 
contrast, the Wasserstein fair classification (WFC) is a regularization method focused on 
minimizing disparities in outcome distribution across different groups,12 and it uses a measure 
of the distance between probability distributions for groups with different sensitive attributes to 
achieve this.13 To ensure statistical independence between prediction and sensitive attributes, 
this method focuses on achieving fairness by optimally equalizing the prediction across various 
groups. Its approach to constraining models for fairness is similar to that of the DM technique. 
 
Unlike the former methods that concentrate on eliminating disparate impact by ensuring similar 
outcomes across groups, additional techniques prioritize fairness measures at an individual level. 
For example, Counterfactual Fairness (CF) is a dominant method of assessing individual fairness. 
It aims to investigate if an outcome would be the same if certain protected attributes were 
different. In practice, a prediction would be considered fair to an individual if its outcome was the 
same for both the actual and counterfactual scenarios.14 Under hypothetical cases, a quantified 
fairness measure is assigned when comparing a model’s predictions when chosen 
characteristics (e.g., race or gender) are altered while the remaining data is unaltered. 
Additionally, the method of Fairness Through Awareness (FTA) is applied to integrate fairness 
constraints into the model optimization process. The objective is to ensure that similar 
individuals receive similar outcomes, correlating prediction with data input similarity.15 This 
methodology utilizes the Lipschitz condition on the classifier, which is a constraint ensuring that 
the difference between the model’s outcomes for similar individuals is bounded by the distance 
between their similarity difference.16 This process can help more controlled behavior of the model 
and stabilize treatment consistency at the individual level.  
 
In recent years, the current work on in-processing algorithms has been dominated by two broad 
approaches: approaches based on generative adversarial networks (GANs) and approaches 
based on constrained optimization. GAN-based approaches include the methods proposed by 

 
11 Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J. (2012). Fairness-aware classifier with prejudice 
remover regularizer. In Machine Learning and Knowledge Discovery in Databases: European Conference, 
ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II 23 (pp. 35-50). Springer Berlin 
Heidelberg. 
12 Wan, M., Zha, D., Liu, N., & Zou, N. (2023). In-process modeling techniques for machine learning 
fairness: A survey. ACM Transactions on Knowledge Discovery from Data, 17(3), 1-27. 
13Jiang, R., Pacchiano, A., Stepleton, T., Jiang, H., & Chiappa, S. (2020, August). Wasserstein fair 
classification. In Uncertainty in artificial intelligence (pp. 862-872). PMLR. 
14 Wan, M., Zha, D., Liu, N., & Zou, N. (2023). In-process modeling techniques for machine learning 
fairness: A survey. ACM Transactions on Knowledge Discovery from Data, 17(3), 1-27. 
15 Id. 
16 Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012, January). Fairness through awareness. 
In Proceedings of the 3rd innovations in theoretical computer science conference (pp. 214-226). 
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Louppe et al. (2017)17 which eliminate reliance on likelihood-inference data and attempt to treat 
protected class membership as a nuisance variable to be eliminated during training. In result, the 
model focuses on capturing the underlying patterns in the data without explicitly considering 
sensitive criteria. Constraint-based systems such as Zafar et al. (2017),18 Cotter et al (2019)19 or 
Narasimhan et al. (2019)20 approach the problem differently: they directly treat disparity as a 
constraint upon the performance of the final model, and then perform a constrained optimization 
to build a less disparate model. 

This study is most closely related to that of Jiang et al. (2020)21 or Donini et al. (2018)22 in which 
they consider the direct minimization of the difference between the distributions of scores. Like 
Jiang et al., and unlike Donini et al, this study focuses on adding a disparity minimization term to 
a standard loss function to measure and narrow the difference between the distributions of the 
classes between which disparities are to be reduced. 

Comparing Distribution Matching to GANs 
A GAN is a combination of two networks, a generator and an adversary, and finding an optimal 
set of weights for the two networks taken together entails finding a saddle point: a set of weights 
which simultaneously minimizes the error due to the generator while maximizing the error due to 
the adversary. Error minimization processes, such as back-propagation, cannot find a saddle 
point: they can only approximate it, and doing so requires slowing down learning as the saddle 
point is approached in order to not “miss” the saddle point and either rise forever (when the act 
of maximizing the error of the adversarial network dominates the act of minimizing the error of 
the generative network) or fall forever (when the act of minimizing the generative network’s error 
dominates the act of maximizing the adversarial network’s error.)23 

In distribution matching, the adversary is replaced by an adaptive system which includes terms 
that measure and minimize the disparity between the distributions of the models’ outputs. The 
key difference is that there is no adversary to be trained; instead, there is a directly observed 
difference between two distributions which does not have to be maximized. This transforms the 
min-max search for a saddle point into a minimization problem with an additional adjustment 
term, where the adjustment term can be incorporated into the training process. 

 
17 Louppe, G., Hermans, J., & Cranmer, K. (2019, April). Adversarial variational optimization of non-
differentiable simulators. In The 22nd International Conference on Artificial Intelligence and Statistics 
(pp. 1438-1447). PMLR.  
18 https://doi.org/10.48550/arXiv.1610.08452 
19 https://proceedings.mlr.press/v97/cotter19b.html. 
20 https://ojs.aaai.org/index.php/AAAI/article/view/5970/5826 
21 https://arxiv.org/abs/1907.12059 
22 https://proceedings.neurips.cc/paper_files/paper/2018 
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This means that model developers can benefit from the performance of modern ML training tools 
with minimal changes to the configuration of their learning systems. In addition, because 
reducing any given disparity by adjusting the loss function simply consists of adding one more 
disparity minimization term, this method makes it relatively easy to incorporate multiple disparity 
targets by simply adding more distribution matching terms, making it applicable to a scenario 
where fairness is sought in a multidimensional space of protected classes or a scenario where 
there are other objectives to be jointly optimized alongside fairness.  

Distribution Matching Can Exploit More Data than Constrained Optimization 
Distribution matching techniques can make use of data that is not normally useful to other 
learning algorithms like constrained optimization.  

First, distribution matching systems can use uncertain demographic data that other algorithmic 
fairness techniques cannot. In many cases, actual demographic data is not available during 
training, and demographic class membership must be evaluated using probabilities of 
membership. Many fairness-enhancing algorithms, including most GAN-based and many pre-
processing and post-processing algorithms, depend on direct assignment of each input record to 
one and only one demographic class. Distribution matching techniques can accommodate 
uncertain demographic class membership data; most other algorithms cannot. 

Second, and more importantly, distribution matching is an algorithm that maps one output 
distribution to another output distribution for any input, and not just for inputs that are associated 
with outcomes. This means DM can use records that other algorithms cannot consume — for 
example, loan applications that were declined and for which there is no performance data. By 
using the information implicit in these additional records, DM can learn more about the 
distribution of all records and build models that are more accurate than models built without such 
information. 

Question Presented 
This study explores whether a modified loss function that includes one or more distribution 
matching terms might overcome the challenges exhibited by other algorithmic fairness 
techniques and yield fairer models with no functional loss of accuracy. 

Preliminary Findings 
The Project Team's preliminary findings are that a learning system enhanced by distribution 
matching can reduce the disparity of underwriting outcomes between Black and Hispanic 
applicants on the one hand and White, non-Hispanic applicants on the other, while maintaining 
accuracy relative to an unenhanced system. These results can be quite dramatic: an increase in 
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the Adverse Impact Ratio (AIR)24 for Black applicants of upwards of 13 percent when compared 
to a model built using the same base loss function without a distribution matching term. The 
Project Team also found that distribution matching may yield significant increases in pricing 
fairness for protected classes — a diminution in standardized mean difference on the order of 15 
percent or higher. 
 

 Materials and Methods 

Data Acquisition 
NFHA acquired a dataset provided courtesy of CoreLogic® consisting of 5,926,182 records 
representing 3,797,678 distinct loans (the “dataset”). This dataset was assembled using a match 
key provided by CoreLogic® to merge the Home Mortgage Disclosure Act database (HMDA 
database) and a proprietary mortgage dataset provided courtesy of CoreLogic®. 

Dataset Characteristics 
The dataset contains records of loans originated from December 1987 through January 2021. 
These records include information about originated mortgages joined with data about the 
performance of those mortgages. Each record includes information about the property (e.g., 
appraisal price), information about the final loan terms (e.g., APR and loan-to-value ratio), and a 
limited amount of information, such as FICO score at the time of origination and the back-end 
ratio of the loan, about the principal borrower for each loan. 

Data Partitioning and Analysis 
The Project Team used loans from January 2010 to December 2016 for model development and 
validation. To facilitate an accurate analysis and to ensure that every record used for the study 
has observation data that covers at least a four-year period, records outside the seven-year 
interval were excluded from the development set. For the analyses that covered the whole United 
States, all loan records were used. For the analyses that covered only the Los Angeles 
Metropolitan Statistical Area, all 65,250 records from the 2010-2016 period were used. Records 
for loans originated between January 2010 and December 2014 were used for ‘in-time’ training 
and testing, and loans originated between January 2015 and December 2016 were used as an 
‘out-of-time’ testing set. The in-time sets were subsequently divided into two subsets using a 
70/30 ratio. The larger subset was used for training purposes, while the smaller subset served as 
an in-time testing dataset. 

 
24 See glossary for definition 
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Fairness Optimization of Linear and Non-Linear Models 
The Project Team investigated whether a model’s fairness could be improved via distribution 
matching (DM) without compromising accuracy. The project team used a Base Loss Function 
(BLF) and a Modified Loss Function (MLF), both described in greater detail below, to train 
underwriting and pricing models. In the case of models trained with a BLF, the model’s objective 
was to accurately predict the default target, for example delinquency or interest rate. In the case 
of models trained with a MLF, the model’s objective was to accurately predict the default target 
while also ensuring that the distribution of predicted outcomes for protected classes matched 
the distribution of predicted outcomes for control class applicants. The Project Team generated 
four underwriting and pricing models using a BLF (referred to hereafter as "Unconstrained 
Models”) and four underwriting and pricing models using the MLF (referred to hereafter as 
“Constrained Models”).   

Each of these eight models could be described as belonging to one of two classes of neural 
networks: linear networks and non-linear networks. All non-linear models contained one hidden 
layer with 256 nodes. Both classes of models included a single layer of 10 nodes, with 
connections to the final output layer being linear. The activation functions on the hidden layer in 
the non-linear network were sigmoids. Finally, since the nominal pricing for any loan is never 
negative, the output layer of the pricing network was made up of a single rectified linear (ReLU) 
node instead of a linear node. (See diagrams below.) 
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Figure 1: Architecture of the nonlinear neural networks 
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Figure 2: Architecture of the linear neural networks 
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Unconstrained Model Targets and Base Loss Functions 
The target for underwriting models trained with the Base Loss Function (BLF) was set to identify 
loan applications that would become 60 days delinquent within the first 48 months after 
origination. The BLF for underwriting was the binary cross-entropy25 between the network output 
and delinquency target. The target for pricing models was identified as the nominal Annual 
Percentage Rate (APR) for loans, with the mean squared error26 between network output and APR 
target serving as the BLF for pricing. 

Constrained Model Targets and Modified Loss Functions 
The Constrained Models were trained with a modified loss function (MLF), which included 
additive terms added to the Base Loss Function (BLF) at the output layer to measure and narrow 
the Jensen-Shannon divergence27 between protected and control class distributions and reduce 
the disparity between them. This process involved mapping each class of applicants to a 
distribution at the second-to-last layer which was linearly transformed to provide an output score 
in the top layer, optimized with the BLF. This methodology was applied to neutralize the difference 
between the target distributions for four racial groups (Black, American Indian and Alaska Native 
(AIAN), and Hispanic) that are all protected classes; one control class (White); and two gender 
groups, one protected (Female) and one control (Male). The output distributions of these classes 
were all forced to match simultaneously, rather than one at a time.  

Analysis of CoreLogic Data 
The Project Team conducted a total of eight separate analyses of the dataset. These analyses 
were designed to consider various combinations of objectives, geographical coverage, and the 
type of loss function utilized. The analyses can be broken down as follows: 

Loss Function Types: Two different kinds of loss functions were employed: 
+ Unconstrained: These models were trained only with accuracy terms and without 

any distribution matching terms. 
+ Constrained: These models were trained with one or more distribution matching 

terms to promote accuracy and increased fairness outcomes for protected 
groups. 

These Loss Function Types were used to build two kinds of models: 
+ Underwriting Models: Algorithms to assess the risk associated with providing a 

mortgage loan. 

 
25 See glossary for definition 
26 See glossary for definition 
27 See glossary for definition 
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+ Pricing Models: Algorithms designed to generate an APR for an offer of mortgage 
credit that is likely to be accepted but that is also commensurate with the riskiness 
of the Applicant. 

Geographies: The Project Team constructed fairness optimized underwriting and pricing 
models across two different geographic areas: 

+ The Whole U.S.: A nationwide analysis that allowed for the creation of national 
underwriting and pricing models reflecting the distributional properties of the 
entire country. 

+ Los Angeles (LA): A fairness optimization analysis specific to the LA metropolitan 
area, which provided insights into the fairness of the mortgage market in this 
significant urban center. 

As discussed above, The Project Team conducted its investigation using data from a sample of 
records dated between January 2010 and December 2016. This period was chosen because it 
was the longest post-2008 financial crisis interval in the data that (1) would be fully seasoned by 
having performance data at least 48 months after origination, and (2) would allow third parties 
and the public to perform independent testing of the Project Team’s results, for example, with the 
omitted 2017 records.  

Fairness Optimization through Distribution Matching 
The foundational principle behind distribution matching is: if the output score distributions 
corresponding to two distinct groups are identical, then the model outputs will exhibit no group 
disparity. Suppose that there are two sets of scores with the same distribution, one corresponding 
to a protected class and another corresponding to the control class. Assume further that output 
scores are used in applications like loan underwriting or other decisioning, and pricing or other 
loan term assignment. When underwriting decisions are made from such a score by thresholding 
(e.g., applicants whose scores are above a certain value are approved and applicants below that 
value are denied) and in a decisioning process where the output score distributions match, there 
will be no group disparity when the protected class performance is compared to the control class 
at any threshold; in other words, the fraction of applicants from the control group with a score 
above that threshold will be identical to the fraction of applicants from the protected group with 
a score above that threshold, resulting in a theoretical 100 percent AIR. In the reverse situation, 
where loans are approved if the model’s score is below a certain threshold, for example in tenant 
scoring applications where a lower score implies a better outcome, thresholding on identical 
distributions will still lead to the same formal outcome. 

The same principle holds true for pricing: if the distribution of pricing outcomes for a protected 
group and a control group are the same, their means and variances will be identical and therefore 
both the mean difference between the distributions will be zero and the standardized mean 
difference between the distributions will be zero. 
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Achieving this parity is non-trivial and requires specific mechanisms to measure the difference 
between the two distributions in question and to use this difference to encourage matched 
distributions. The difference between the distributions is measured using the Jensen-Shannon 
(JS) divergence,28 a measure that quantifies the disparity between two probability distributions. 
It is always non-negative and is zero if and only if the two measures are identical.29 Therefore, if 
a term proportional to the JS disparity between two distributions is added to a loss function and 
minimized, that term will tend to force the two output distributions to be identical. 
 

 Data Analysis 
Input Transformation 
The Project Team took several steps to pre-process the input data provisioned by NFHA. Only a 
specific subset of the variables was used as model inputs. This subset was selected after 
consultation with industry experts30 about which data elements would be available at decision 
time, as well as which data elements are used for underwriting by the Government Sponsored 
Enterprises (GSEs), Freddie Mac and Fannie Mae.  

Categorical variables were separated into a set of flag variables for each unique value in such an 
input, and a binary feature with a value of either zero or one was created, marking the presence 
or absence of that value in each given record. 

Continuous variables were standardized with each input feature transformed linearly to have a 
mean of zero and a standard deviation of one. This step was taken because some learning 
algorithms can fail if the inputs are either too large or too small. In cases where data points were 
missing, zeros were used as replacements.  

 
28 The Jensen-Shannon divergence is a way to tell how similar or different two sets of data are. Imagine 
you're comparing two fruit bowls to see how similar they are in terms of fruit variety. If one bowl has a 
mix of apples and oranges, and the other has the same but with different amounts of each, the Jensen-
Shannon divergence helps measure how much the mix of fruit in one bowl differs from the mix in the 
other. The divergence has some handy characteristics: it will always give you a result, it works the same 
both ways (comparing bowl A to bowl B is the same as B to A), and it behaves nicely in a geometric sense 
– just like you can measure distance with a ruler. This makes it very useful in fields like information 
theory, machine learning, and biology to compare all sorts of data, not just fruit bowls! It's like having a 
universal tool for measuring the difference between any two sets of things. 
29 Bruni, V., Rossi, E. & Vitulano, D. Jensen–Shannon divergence for visual quality assessment. SIViP 7, 
411–421 (2013). https://doi.org/10.1007/s11760-013-0444-3 
30 Neither the CoreLogic data dictionary nor the data itself was shared in connection with these 
consultations. 
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Certain coded values signified missing data. Specifically, any FICO score below 250 or exceeding 
800 was recognized as a missing value code. Such scores were replaced with zero after 
standardization to ensure accurate transformation. 

The missingness statistics of the continuous input variables are shown in Table 1 below. There 
were no missing values in any of the discrete variables. 

Table 1: Missingness rates for continuous variables 

Variable Missingness rate (%) 

number_of_units 0.0 

appraised_value 55.9 

original_ltv 0.0 

combined_ltv_at_origination 80.3 

io_term 99.9 

back_end_ratio 59.1 

fico 2.1 

Input Data  
Table 2: Input variables used in training the underwriting and pricing models’ scoring functions  

Variable name Interpretation Values 

fico The borrower’s FICO credit score at 
the time of loan origination 

Continuous, derived from 
fico_score_at_origination by 
replacing all value below 
250 or above 900 with NULL 

number_of_units The total number of units or housing 
units within the property. 

Continuous: valid values  
are 0-99 or NULL. 

appraised_value The appraised value of the property Continuous 
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Variable name Interpretation Values 

original_ltv The loan-to-value ratio at the time of 
application 

Continuous 

combined_ltv_at_origin
ation 

The combined loan-to-value ratio at 
the time of origination 

Continuous 

io_term The term or duration of an interest-
only payment period, if applicable 

Continuous 

back_end_ratio The back-end debt-to-income ratio for 
the primary applicant 

Continuous 

coapplicant_present Was there a coapplicant on the loan? Boolean recast as 
continuous. 

statecode The code representing the state 
where the property is located 

Discrete: 51 USPS codes  
or nan if not present 

property_type The type or category of the property 
(e.g., single-family home, 
condominium) 

Discrete:  
1 = SFR (Single Family 
Residence) 
2 = Condominium 
3 = Co-Operative 
4 = Multi-Family (2-4 Units) 
5 = Townhouse 
6 = Planned Unit 
Development 
7 = Multi-Family (5+ Units) 
8 = Commercial Property 
9 = Mixed Use Property 
L = Lot 
M = Manufactured Housing 
U = No Info 
Z = Other 

occupancy_type The type of occupancy for the 
property (e.g., owner-occupied, rental) 

Discrete:  
1. Principal residence 
2. Second residence 
3. Investment property 
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Variable name Interpretation Values 

U. Unknown/No info 

payment_frequency How often loan payments are made 
(e.g., monthly, biweekly) 

Discrete: 
1 = Weekly Payments 
2 = Bi-weekly Payments 
3 = Semi-Monthly Payments 
4 = Monthly Payments 
5 = Quarterly Payments 
6 = Semi-Annual Payments 
7 = Annual Payments 
U = No Info 

channel Lender’s origination source of the 
loan. 

Discrete: 
1 = Retail Branch 
2 = Wholesale 
3 = Mortgage Broker 
4 = Realtor Originated 
5 = Relocation Corporate 
6 = Relocation Mortgage 
Broker 
7 = Builder 
8 = Direct Mail 
9 = Other Direct 
A = Internet 
B = Other Retail 
C = Mortgage Banker 
D = Corresponded Lender 
U = No Info 

documentation_type The documentation requirements 
used for underwriting the loan. 

Discrete: 
1 = Full Documentation 
2 = Low or Minimal 
Documentation 
3 = No Asset/Income 
Verification 
U = No Info 
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Variable name Interpretation Values 

io_flag A flag indicating whether the loan 
includes an interest-only payment 
period 

Discrete: 
Y = Yes  
N = No 
U = No Info 

product_type_category Product type for the loan (Fixed, ARM, 
or Unknown) 

Discrete: 
F = Fixed 
A = ARM  
U = No Info 

gse_eligible_flag A flag indicating whether the loan is 
eligible for purchase by government-
sponsored enterprises (GSEs) 

Discrete: 
0 = Non-Conforming 
1 = Conforming (standard 
GSE policy) 
2 = Jumbo Conforming 
(expanded GSE policy 
starting in 2008) 
U = No Info 

 

Target data 
Table 3 – Target values 

Variable name Interpretation Values 

Underwriting eventually_60dq Was the loan ever 60 days 
delinquent? 

Pricing interest_rate Nominal interest rate 

 

 Accuracy and Fairness Metrics 
The Project Team used two metrics to identify the ‘best’ underwriting model: Area Under the Curve 
(AUC)31 and Adverse Impact Ratio (AIR).32  The best underwriting models were defined as having 

 
31 See glossary for definition 
32 See glossary for definition 
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an AUC value that was within a very close margin (0.01) of the highest AUC achieved amongst all 
the scoring functions. The Project Team also required that the AIR be maximized across all 
demographic categories such that the ‘best’ models were the ones with the highest AUC within 
the close margin and the highest minimal AIR among those with AUCs within the close margin. 

The Project Team used two metrics to identify the ‘best’ pricing model: Mean Squared Error 
(MSE)33 and Standardized Mean Difference (SMD).34 The best pricing model was defined as 
having the lowest MSE and the SMD with the lowest absolute value across all demographic 
categories given that MSE. 

Dealing with Absence of Information on Unapproved Loans 
One of the challenges faced by the Project Team in conducting this study was the absence of 
information on unapproved loans. This omission would normally make it impossible to compute 
AIR and AUC statistics for an underwriting model, since there would be no way to determine how 
the classifier behaved on loan applications that were either denied or approved but not originated. 
To manage this limitation, the underwriting models were calibrated to approve only the top five-
sixths of the dataset. The performance of the underwriting model could then be estimated by 
treating the lowest one-sixth as the class of unapproved loans. 

The Project Team considered adding HMDA records associated with denied loans in the publicly 
available data but concluded that taking this step would not have resolved the data sufficiency 
problem because many of the declined applications in the publicly available HMDA database lack 
essential input features, making them inadequate for purposes of this analysis. A richer column 
space is available for post-2017 Loan Application Records in the HMDA database, which, if 
combined with a more contemporary dataset on originated loans, could further validate the 
results of this study. 

Demographic Information and Categorization  
The dataset had self-reported demographic class membership for each loan record. The 
demographic groups in the data were: six races or ethnicities (White, Black, Asian or Pacific 
Islander, American Indian or Alaska Native (AIAN), two or more non-White races, and Hispanic) 
and two genders (Male or Female). The distinction between race and ethnicity is often nuanced 
and they can be treated differently. However, many proxies for race and ethnicity treat them as a 
single feature. For this analysis, the Project Team treated Hispanic ethnicity as a stand-alone 
race. Consequently, regardless of the race an applicant may have self-identified with, if they also 
reported being of Hispanic ethnicity, they were recategorized exclusively as 'Hispanic' in this 

 
33 See glossary for definition 
34 See glossary for definition  
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analysis. Under this categorization schema, then, a 'non-Hispanic White' applicant was simply 
coded as 'White.' In contrast, a 'White Hispanic' applicant was coded as 'Hispanic.' 

Table 4: Demographic values 

Variable name Interpretation Values 

applicant_race Primary applicant race 1. American Indian or Alaska 
Native 
2. Asian 
3. Black or African American 
4. Native Hawaiian or Other 
Pacific Islander 
5. White 
6. Information not provided by 
applicant in mail internet or 
telephone application 
7. Not applicable. 

coapplicant_race Co-applicant race (if any) 1. American Indian or Alaska 
Native 
2. Asian 
3. Black or African American 
4. Native Hawaiian or Other 
Pacific Islander 
5. White 
6. Information not provided by 
applicant in mail internet or 
telephone application 
7. Not applicable 
8. No co-applicant. 

applicant_ethnicity Primary applicant ethnicity 1.Hispanic or Latino 
2. Not Hispanic or Latino 
3. Information not provided by 
applicant in mail internet or 
telephone application 
4. Not applicable. 

coapplicant_ethnicity Co-applicant ethnicity (if any) 1.Hispanic or Latino 
2. Not Hispanic or Latino 
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Variable name Interpretation Values 

3. Information not provided by 
applicant in mail internet or 
telephone application 
4. Not applicable 
5. No co-applicant. 

applicant_sex Primary applicant gender 1. Male 
2. Female 
3. Information not provided by 
applicant in mail internet or 
telephone application 
4. Not applicable 
6. Applicant selected both 
male and female 

coapplicant_sex Co-applicant gender (if any) 1. Male 
2. Female 
3. Information not provided by 
applicant in mail internet or 
telephone application 
4. Not applicable 
5. No co-applicant 
6. Co-applicant selected both 
male and female 
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 Input Subset Selection 

Nationwide Dataset 
After trimming the dataset of years prior to 2010 and subsequent to 2016, the dataset contained 
3,234,601 unique loan records, which were partitioned into an in-time training set and an out-of-
time testing set with a 70/30 ratio. 

Los Angeles Specific Dataset 
The Los Angeles-specific dataset contained 65,250 total records in the dataset referring to loans 
within the LA Metropolitan Statistical Area. These records were partitioned into an in-time training 
set and an out-of-time test set with a 70/30 ratio. 

Selecting Models for consideration 
Underwriting models were selected by observing the highest AUC and AIR values achieved by 
each potential model on the out-of-time test set. All AUC and AIR scores were rounded to the 
nearest 0.05 in order to eliminate false precision. The best Unconstrained underwriting model 
was taken to be the one with the highest AUC and the highest AIR across all models with that 
same AUC. The best Constrained underwriting model was similarly selected. Pricing models were 
chosen in the same manner, except that the ‘best’ pricing models selected minimized the MSE 
and the absolute value of the associated SMD. 

Training Details and Tools 
All models were built using Python 2.10. Optimization was performed using TensorFlow v 2.10.0, 
numpy v 1.23.3, scipy v 1.91, and pandas v 1.5.0. The search for the optimal hyperparameters 
controlling the balance among the terms in the loss function was performed using hyperopt v 
0.2.7. The hyperparameter search was run for 100 tests in each of the eight configurations for 
which networks were constructed, and the relevant accuracy and fairness statistics (AUC and AIR 
for underwriting and MSE and SMD for pricing) were displayed in each graph. 

Due to the absence of any records reflecting applications that were not funded, the distribution 
matching algorithm was applied only to applications that were originated. 
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 Results 

Performance Figures 
Figures 3(a) to 6(a) show the fairness and accuracy behavior of the Constrained and 
Unconstrained underwriting scoring functions by plotting the AUC and the AIR when the scoring 
function approves five-sixths of all applications. As mentioned above, there were no records in 
the dataset that were not approved, so it was not possible to create a meaningful swap-set. 
Results are shown for only two of the protected groups — Black and Hispanic applicants — by 
showing a dot for each potential scoring function. It is not easy to see the dots corresponding to 
Unconstrained Models here because they all fall inside a very small area that is completely 
covered by the results of Constrained Models. 

Figures 3(b) to 6(b) show the fairness and accuracy behavior of the Constrained and 
Unconstrained pricing functions. Unlike the case of the underwriting scoring functions, a pricing 
model can only be trained on originated loans, so there was no loss of information in the analysis.  

Figures 3 through 6 are two-dimensional histograms that display the number of models that fall 
into each block in the performance range. For underwriting models, the performance range is 
defined by each model's AUC and AIR. For pricing models, the performance range is defined by 
each model's MSE and SMD. Each plot contains squares denoting a performance range along 
these dimensions. In each plot, a blue square means that there were one or more Constrained 
models but no Unconstrained models in that performance range; a red square means that there 
were one or more Unconstrained models but no Constrained models in that performance range; 
and a purple box means there were both Constrained and Unconstrained models in that 
performance range.  

Cameron French
EMBARGOED UNTIL APRIL 24, 2024



  
 
 

 
 
 

   24 PRELIMINARY FINDINGS 

Figure 3: Performance scatter plots – All US, nonlinear neural network 

(a) Underwriting 

 

(a) Pricing 
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Figure 4: LA County only, nonlinear neural network 

(a) Underwriting 

 

(b) Pricing 
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Figure 5:  All US, nonlinear logistic regression or ReLU fit 

(a) Underwriting 

 

(b) Pricing 
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Figure 6: LA county only, logistic regression or ReLU fit 

(a) Underwriting 

 

(b) Pricing 
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 Feature Importance 

Contributors to the Final Outputs 
Tables 5 through 8 show the estimated contributions of the most important variables to the 
output of the best linear and non-linear Unconstrained and Constrained underwriting models for 
both the entire U.S. and the LA metro area. Tables 9 through 12 show the estimated contributions 
of the 10 most important variables to the pricing models. Expanded tables covering more of these 
values are included in Appendix B. These variable importances were computed by using XGBoost 
to create a surrogate for each of the best underwriting and pricing models35 and then using the 
SHAP package to generate a set of outcome contributors. These contributors were then 
organized in inverse order of their absolute values, and then the normalized sum of those was 
computed to measure the fractional impact of each variable.  

Table 5: Variable contributions to the best linear underwriting functions36 for the entire U.S. 

Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

fico 58.87 fico 56.66 

original_ltv 20.06 original_ltv 17.41 

back_end_ratio 5.14 back_end_ratio 4.69 

appraised_value 2.70 channel_D 2.18 

occupancy_type_U 2.12 payment_frequency_4 1.85 

channel_D 1.62 property_type_2 1.69 

payment_frequency_4 1.03 channel_1 1.26 

property_type_2 0.96 channel_2 1.12 

channel_2 0.72 appraised_value 1.09 

statecode_CA 0.66 number_of_units 0.95 

 
35  To facilitate explainability, these models were trained to be surrogates for the original neural network 
or linear models. SHAP was then used to explain the impact of changes in the original variables on the 
outputs of the surrogate models and those values, in turn, were used to estimate the contributions of the 
input variables to the outputs of the original models. 
36 “Linear underwriting function” both here and in Tables 7, 9, and 11 refers to the output of a linear 
underwriting model. 
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Table 6: Variable contributions to the best nonlinear underwriting functions37 for the entire U.S. 

Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

fico 58.79 fico 51.79 

original_ltv 19.50 original_ltv 13.06 

back_end_ratio 5.45 back_end_ratio 7.33 

occupancy_type_U 2.92 channel_2 6.39 

appraised_value 2.84 appraised_value 4.66 

channel_D 1.28 number_of_units 4.24 

property_type_2 1.24 payment_frequency_U 1.42 

coapplicant_present 1.05 gse_eligible_flag_1 1.33 

channel_2 0.94 coapplicant_present 1.22 

payment_frequency_U 0.65 payment_frequency_4 1.02 

Table 7: Variable contributions to the best linear underwriting functions for the LA Metro area 

Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

fico 50.23 fico 55.72 

original_ltv 18.30 original_ltv 21.58 

appraised_value 5.95 channel_1 2.60 

back_end_ratio 5.06 appraised_value 2.34 

occupancy_type_U 4.57 occupancy_type_1 2.18 

gse_eligible_flag_1 4.47 occupancy_type_U 2.14 

channel_D 1.77 gse_eligible_flag_1 1.98 

payment_frequency_4 1.59 back_end_ratio 1.89 

coapplicant_present 1.45 documentation_type_2 1.73 

documentation_type_2 1.10 channel_D 1.09 

 
37 “Nonlinear underwriting function” both here and in Tables 8, 10, and 12 refers to the output of a 
nonlinear underwriting model. 

Cameron French
EMBARGOED UNTIL APRIL 24, 2024



  
 
 

 
 
 

   30 PRELIMINARY FINDINGS 

Table 8: Variable contributions to the best nonlinear underwriting functions for the LA Metro area 

Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

fico 51.18 fico 49.16 

original_ltv 21.73 original_ltv 12.09 

occupancy_type_U 4.31 number_of_units 6.63 

appraised_value 3.70 back_end_ratio 4.27 

back_end_ratio 3.34 gse_eligible_flag_2 3.40 

coapplicant_present 2.72 occupancy_type_U 3.27 

gse_eligible_flag_1 2.34 property_type_4 3.14 

channel_D 1.90 appraised_value 3.13 

gse_eligible_flag_0 1.44 channel_2 3.10 

documentation_type_2 1.27 property_type_1 2.51 

Table 9: Variable contributions to the best linear pricing functions for the entire U.S. 

Unconstrained Constrained 
Variable Contribution (%) Variable Contribution (%) 

appraised_value 24.25 fico 30.13 

channel_D 8.40 occupancy_type_3 17.07 

channel_1 6.26 property_type_5 6.10 

statecode_NJ 6.11 appraised_value 6.05 

back_end_ratio 6.09 occupancy_type_1 5.25 

fico 5.58 property_type_6 4.03 

gse_eligible_flag_0 4.97 channel_2 3.73 

statecode_NY 3.41 property_type_2 3.42 

statecode_CA 3.40 channel_D 3.17 
product_type_categ
ory_A 3.35 channel_9 2.69 
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Table 10: Variable contributions to the best nonlinear pricing functions for the entire U.S. 

Unconstrained Constrained 
Variable Contribution (%) Variable Contribution (%) 

back_end_ratio 17.84 back_end_ratio 21.80 

product_type_category_A 16.71 appraised_value 15.61 

channel_D 12.49 payment_frequency_4 13.40 

channel_2 7.72 fico 12.95 

fico 7.47 channel_2 8.00 

coapplicant_present 6.54 coapplicant_present 5.17 

occupancy_type_3 4.76 occupancy_type_1 4.00 

appraised_value 4.62 product_type_category_A 3.83 

product_type_category_F 4.19 channel_9 3.39 

number_of_units 4.06 number_of_units 2.94 

Table 11. Variable contributions to the best linear pricing functions for LA Metro area 

Unconstrained Constrained 
Variable Contribution (%) Variable Contribution (%) 

appraised_value 24.64 number_of_units 13.34 

gse_eligible_flag_0 18.76 channel_2 12.83 

occupancy_type_3 5.89 property_type_4 10.78 

gse_eligible_flag_2 5.24 channel_D 10.44 

original_ltv 4.82 product_type_category_F 6.58 

documentation_type_1 4.58 appraised_value 6.49 

product_type_category_A 4.50 back_end_ratio 5.21 

io_flag_N 3.77 property_type_1 4.92 

gse_eligible_flag_1 3.73 occupancy_type_3 3.88 

channel_D 3.70 gse_eligible_flag_0 3.54 
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Table 12. Variable contributions to the best nonlinear pricing functions for LA Metro area 

Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

gse_eligible_flag_1 23.94 channel_D 24.29 

gse_eligible_flag_0 17.60 gse_eligible_flag_0 9.63 

channel_D 16.34 occupancy_type_1 8.84 

channel_2 7.66 occupancy_type_3 8.10 

product_type_category_A 5.87 fico 6.91 

fico 5.77 product_type_category_A 5.97 

occupancy_type_3 4.19 product_type_category_F 4.81 

occupancy_type_1 3.95 property_type_1 4.59 

original_ltv 3.06 number_of_units 4.43 

payment_frequency_4 2.24 property_type_U 3.58 
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 Performance Summary 

Comparing the Overall Performance of the Unconstrained and Constrained Models 
Table 13 shows the overall performance of the best Unconstrained and Constrained models for 
both underwriting and pricing. The two left-hand columns show the statistics for the best 
Unconstrained and Constrained linear and nonlinear underwriting models, respectively. The two 
right-hand columns show the relative improvement or deterioration between the corresponding 
Constrained and Unconstrained models. Table 14 shows the corresponding values for the best 
Constrained and Unconstrained pricing models.  

Table 13: Performance summary for Underwriting models 

  Model type Relative change 

  Linear Nonlinear Linear Nonlinear 

US 

AUC (unconstrained) 0.8 0.8   

AIR (unconstrained) 0.75 0.75   

AUC (constrained) 0.8 0.8 0.00% 0.00% 

AIR (constrained) 0.8 0.85 6.67% 13.33% 

      

LA 

AUC (unconstrained) 0.85 0.85   

AIR (unconstrained) 0.65 0.65   

AUC (constrained) 0.85 0.85 0.00% 0.00% 

AIR (constrained) 0.75 0.75 15.38% 15.38% 
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Table 14: Performance summary for Pricing models 

  Model type Relative change 

  Linear Nonlinear Linear Nonlinear 

US 

MSE (unconstrained) 0.35 0.4   

SMD (unconstrained) 0.3 0.45   

MSE (constrained) 0.35 0.35 0.00% 14.29% 

SMD (constrained) 0.2 0.35 50.00% 28.57% 

      

LA 

MSE (unconstrained) 0.15 0.15   

SMD (unconstrained) 0.55 0.45   

MSE (constrained) 0.15 0.15 0.00% 0.00% 

SMD (constrained) 0.4 0.45 37.50% 0.00% 

 

 

 

 

 

 

 

 

Cameron French
EMBARGOED UNTIL APRIL 24, 2024



  
 
 

 
 
 

   35 PRELIMINARY FINDINGS 

 Discussion 

Behavior of Underwriting Scoring Functions 
For an AUC versus AIR plot at a fixed approval rate, one would expect that an efficient frontier 
would trend up and to the left, indicating a tradeoff between higher fairness and lower accuracy, 
with a fairer model, in general, being less accurate than a less fair model. In the case of the 
Constrained underwriting models, there is a clear Pareto frontier of models that traverse the 
accuracy-fairness spectrum. Interestingly, there is also a multiplicity of fairer Constrained models 
with identical accuracy to the second decimal of the Unconstrained models. This can be observed 
in the Figures 3(a) through 6(a): the Unconstrained models all have their AUC/AIR points 
aggregated in the lower right of the plot, whereas there are Constrained models which have their 
AUC/AIR points in a vertical stripe directly above the Unconstrained models.  

Behavior of Pricing Functions 
For an MSE versus SMD plot with the same training and testing data, one would expect that an 
efficient frontier would run towards an SMD of 0 and towards a larger MSE, indicating a tradeoff 
between fairness and accuracy. As discussed below, this is not seen. However, as in the case of 
underwriting models, there are several Constrained models with accuracies as good or better 
than the most accurate Unconstrained models, but which are fairer. 

Performance of the distribution matching technique 

Interpreting the Constrained underwriting models 
It’s clear that the Constrained underwriting models depend on the distribution matching algorithm 
to find the Pareto frontier: the Unconstrained underwriting models form a small cluster around a 
certain AIR-AUC point whereas the Constrained models show a clear up-and-to-the-left fairness 
accuracy tradeoff. Importantly, there are many Constrained models with AUCs that are 
indistinguishable from those of several Unconstrained models, but which nevertheless have 
higher AIRs from whence the efficient frontier can originate, demonstrating that the distribution 
matching method can create underwriting fairness gains in excess of 13 percent without 
sacrificing accuracy. 

In the cases where the performance of a Constrained model exceeds the performance of the best 
Unconstrained model, it is worth noting how similar the different models are. The variables that 
contribute the most to the two models are nearly identical. Moreover, the contributions of the two 
most important variables — the primary applicant's FICO score at time of origination and the 
original loan to value ratio — are very close together. Since these two variables contribute close 
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to 70 percent of the final decisions of both models, it is reasonable to conclude that the most 
accurate and fair Constrained model is only a small perturbation of the most accurate and fair 
Unconstrained model. 

Interpreting the Constrained pricing models 
It is challenging to interpret the Unconstrained or the Constrained pricing models that emerged 
from the training process. First, there does not appear to be an obvious Pareto frontier in the 
behavior of the pricing models. Second, the MSEs of both the Constrained and Unconstrained 
pricing models were unexceptional. Third, mortgage pricing is known to rely on data elements 
such as the prevailing rate on the 10-year U.S. Treasury bond, which were not available in the data. 
Nevertheless, the distribution matching technique appears to generate Constrained pricing 
models that are fairer and more accurate than any of the Unconstrained pricing models.  

Limitations of the available data 
The data available to perform this study had some limitations. 

First, the dataset contained no unapproved loan applications, which makes it challenging to 
examine the behavior of the underwriting function accurately: it is impossible to determine which 
loans were denied historically but would have been approved with the new scoring function. In 
addition, the lack of unoriginated applications eliminates a powerful source of information that 
the Distribution Matching code could have exploited: the DM code can consume all applications, 
not merely those that were approved. In other work, the Project Team has found that the inclusion 
of data on unapproved loans can yield LDA candidates that are fairer and more accurate than 
those constructed without it.  

As discussed above, the Project Team considered adding records of unapproved loans drawn 
from the HMDA database to strengthen its analysis but concluded that those records did not 
contain enough information about each application to be useful because they lacked essential 
input features. 

In addition, there is virtually no information available in the dataset about the applicant or 
applicants: the two variables available at origination that directly relate to applicants are their 
FICO score and the back-end ratio of the loan. Normally, at underwriting time, lenders have direct 
access to information about the applicant’s income, employment history, payment history and 
other financial indicators. Without such data about the applicant and co-applicant (if any), 
underwriting models will tend to underperform. In addition, the dataset contained no information 
about the macroeconomic environment at the time of application. That is a material omission 
since mortgages are, in part, often priced on the basis of the prevailing interest rate on the U.S. 
10-year U.S. Treasury bond. Without data about that rate and the stability of that rate, mortgage 
pricing models will be less reliable. 
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Another limitation of the data used for this study: it was created via a statistical merge process 
which combined data from the HMDA database with a proprietary servicing dataset owned by 
CoreLogic®. The merge process by which the dataset was constructed resulted in individual 
records from either dataset matching more than one record from the other dataset. To give a 
sense of scale for this problem, about one HMDA record in 12 appears more than once in the 
training data, and, since each duplicated record winds up in the training or testing sets more than 
once, its presence distorts the statistics of the training set.  

This is not an uncommon problem when using sampled data and is often ameliorated by 
weighting each record in the sampled dataset in a way that captures its probabilistic frequency. 
The Project Team could not, however, determine how to weight records: not only could a single 
HMDA record match multiple records from the database of originated loans, but a single record 
could match multiple HMDA records. Without the exact details of the merger counts, it is 
impossible to determine how to optimally weight each record in the resulting statistical merge.  

 Conclusion 
 
The Project Team’s Preliminary Findings are that Distribution Matching, whereby a model learns 
during the training process that the distribution of outputs for protected groups and control 
groups ought to closely resemble each other, can increase mortgage underwriting and pricing 
fairness in excess of 13 percent with no functional diminution in accuracy. Thus, the Preliminary 
Findings of this study demonstrate a potentially viable pathway for integrating disparity 
minimization and other public policy goals into algorithmic decision-making without sacrificing 
performance, an approach that aligns with emerging regulatory frameworks for artificial 
intelligence and societal calls for more equitable housing and financial practices. 
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 Appendix A 

Data field description for CoreLogic® dataset 
Here is the interpretation of each variable name into English: 
  1. `loan_id`: A unique identifier for a loan. 
  2. `add_date`: The date when the loan information was added or recorded. 
  3. `property_zip`: The ZIP code of the property associated with the loan. 
  4. `statecode`: The US Postal Code representing the state where the property is located. 
  5. `property_type`: The type or category of the property (e.g., single-family home, condominium). 
  6. `number_of_units`: The total number of units or housing units within the property. 
  7. `occupancy_type`: The type of occupancy for the property (e.g., owner-occupied, rental). 
  8. `origination_date`: The date when the loan was initially originated or approved. 
  9. `maturity_date`: The date when the loan is scheduled to mature or be fully paid off. 
10. `first_payment_date`: The date when the first payment on the loan is due. 
11. `original_balance`: Funded amount for this loan provided at the time of origination. 
12. `sale_price`: The price at which the property was sold. 
13. `appraised_value`: Reported fair market value of a property. 
14. `product_type`: The type of loan product (e.g., fixed-rate, adjustable-rate, Interest only). 
15. `original_term`: The original duration of the loan in months or years. 
16. `initial_interest_rate`: The initial interest rate on the loan at origination. 
17. `back_end_ratio`: Total of all debt payments including the new mortgage payment (principal, 
interest, insurance and taxes, (PITI)) divided by the gross monthly income of the borrower(s). 
18. `loan_type`: The type of loan (e.g., FHA, conventional). 
19. `loan_purpose`: Borrower’s stated purpose for the loan. 
20. `payment_frequency`: How often loan payments are made (e.g., monthly, biweekly). 
21. `channel`: Lender’s origination source of the loan. 
22. `buydown_flag`: Indicates situations where the borrower paid additional points at closing in 
order to obtain a reduction to the interest rate. 
23. `documentation_type`: The type of documentation provided for the loan application. 
24. ̀ pmi_company_code`: The code representing the private mortgage insurance (PMI) company. 
25. `pool_insurance_flag`: Indicates loans that are covered by a supplemental mortgage 
insurance 
covering a pool of loans as opposed to loan-level mortgage insurance. 
26. `original_ltv`: Original Loan To Value. Original mortgage amount divided by the lesser of the 
origination appraised value or the sales price.. 
27. `convertible_flag`:.Indicates whether the borrower has an option to convert their ARM 
mortgage to a fixed rate loan. 
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28. `origination_ltv`: The loan-to-value ratio at the time of origination. Original mortgage amount 
divided by the lesser of the origination appraised value or the sales price. 
29. `negative_amortization_flag`: A flag indicating whether the loan has negative amortization. 
30. `arm_index_id`: Published financial index name used as a basis to determine the interest rate 
of the loan. 
31. `margin`: The margin added to the ARM index to determine the interest rate. 
32. `periodic_rate_cap`: Limit on how much the interest rate can increase during any one 
adjustment period regardless of the margin and index. 
33. `periodic_rate_floor`: Limit on how much the interest rate can decrease during any one 
adjustment period regardless of the margin and index. 
34. `lifetime_rate_cap`: The maximum allowable interest rate adjustment over the life of an ARM. 
35. ̀ lifetime_rate_floor`: The minimum allowable interest rate adjustment over the life of an ARM. 
36. `rate_reset_frequency`:Number of months between rate resets for adjustable rate loans. 
37. `pay_reset_frequency`: How often the payment amount on an ARM is reset. 
38. `first_rate_reset_period`: Number of months between payment resets for adjustable rate 
loans. 
39. `fico_score_at_origination`: Borrower’s FICO credit score at the time of loan origination.  
40. `lien`: The type of lien associated with the loan (e.g., first lien, second lien). 
41. ̀ prepay_penalty_flag`: A flag indicating whether there is a prepayment penalty associated with 
      the loan. 
42. `prepay_penalty_term`: The term or duration of the prepayment penalty. 
43. `combined_ltv_at_origination`: The combined loan-to-value ratio at the time of origination. 
44. `cbsa`: The Core-Based Statistical Area where the property is located. 
45. `io_term`: The term or duration of an interest-only payment period, if applicable. 
46. `io_flag`: A flag indicating whether the loan includes an interest-only payment period. 
47. `msa`: The Metropolitan Statistical Area where the property is located. 
48. `paid_off_flag`: A flag indicating whether the loan has been paid off. 
49. `inferred_collateral_type`: Identifies whether the loan is Prime or Subprime as defined by 
CoreLogic®. 
50. `collateral_type`: Identifies whether the loan is Prime or Subprime as defined by 
contributor. 
51. `orig_active_status`: Active status at Origination. 
52. `period`: Reporting period as of the date of the data. (Represented as a CoreLogic® defined 
numeric value.). 
53. `product_type_category`: Product type for the loan (Fixed, ARM, or Unknown). 
54. `loan_purpose_category`: Summarized purpose of the loan based on aggregation of the 
primary Loan Purpose field. 
55. `mortgage_insurance_flag`: Indicates the presence of mortgage insurance at origination. 
56. `gse_eligible_flag`: A flag indicating whether the loan is eligible for purchase by  
      government-sponsored enterprises (GSEs). 
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57. `data_year`: The year in which the loan data is recorded. 
58. `applicant_ethnicity`: The ethnicity of the loan applicant. 
59. `coapplicant_ethnicity`: The ethnicity of the co-applicant, if applicable. 
60. `applicant_race`: The race of the loan applicant. 
61. `coapplicant_race`: The race of the co-applicant, if applicable. 
62. `applicant_sex`: The gender of the loan applicant. 
63. `coapplicant_sex`: The gender of the co-applicant, if applicable. 
64. `applicant_age`: The age of the loan applicant. 
65. `co_applicant_age`: The age of the co-applicant, if applicable. 
66. `applicant_age_above_62`: A flag indicating whether the loan applicant is above the age of 
62. 
67. `co_applicant_age_above_62`: A flag indicating whether the co-applicant is above the age of 
62 
68. `active_status`: The current active status of the loan. 
69. `epd_fha`: Indicates early payment default using Federal Housing 
Administration (FHA) methodology. 
70. `epd_gse`: Indicates early payment default using Government Sponsored 
Entity (GSE) methodology. 
71. `foreclosure_start_date`: The date when a foreclosure process on the property started. 
72. `foreclosure_end_date`: The date when a foreclosure process on the property ended. 
73. `bankruptcy_start_date`: The date when a bankruptcy process started, if applicable. 
74. `bankruptcy_end_date`: The date when a bankruptcy process ended, if applicable. 
75. `bankruptcy_chapter`: The chapter of bankruptcy, if applicable. 
76. `payoff_period`: Period when loan was first paid off since last time MBA Delinquency Status 
was 30, 60 or 90 Days delinquent, Current, Foreclosed and Current Balance was greater than $0. 
77. `payoff_date`: The date when the loan is fully paid off. 
78. `first_period_30_days_delinquent`: The first period when the loan became 30 days delinquent. 
79. `first_period_60_days_delinquent`: The first period when the loan became 60 days delinquent. 
80. `first_period_90_days_delinquent`: The first period when the loan became 90 days delinquent.  
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 Appendix B 

Variable contributions for nonlinear models for underwriting for the entire U.S. for the 
best Unconstrained and Constrained models 

Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

fico 58.79 fico 51.79 

original_ltv 19.50 original_ltv 13.06 

back_end_ratio 5.45 back_end_ratio 7.33 

occupancy_type_U 2.92 channel_2 6.39 

appraised_value 2.84 appraised_value 4.66 

channel_D 1.28 number_of_units 4.24 

property_type_2 1.24 payment_frequency_U 1.42 

coapplicant_present 1.05 gse_eligible_flag_1 1.33 

channel_2 0.94 coapplicant_present 1.22 

payment_frequency_U 0.65 payment_frequency_4 1.02 

payment_frequency_4 0.56 channel_U 0.91 

statecode_CA 0.50 occupancy_type_1 0.82 

gse_eligible_flag_2 0.47 channel_1 0.75 

statecode_CO 0.38 channel_D 0.47 

statecode_NV 0.33 statecode_CA 0.44 

channel_U 0.29 statecode_CO 0.35 

channel_9 0.25 property_type_5 0.34 

statecode_IL 0.18 gse_eligible_flag_0 0.26 

statecode_AZ 0.18 statecode_AR 0.25 

io_flag_N 0.17 property_type_6 0.24 

property_type_M 0.16 statecode_FL 0.23 

statecode_WA 0.15 io_flag_N 0.20 

statecode_CT 0.14 statecode_UT 0.18 

statecode_NC 0.13 statecode_WA 0.18 
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Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 
combined_ltv_at_originatio
n 0.13 property_type_4 0.15 

statecode_MN 0.09 statecode_OH 0.15 

statecode_OR 0.08 property_type_2 0.14 

property_type_1 0.07 
combined_ltv_at_originatio
n 0.12 

statecode_NY 0.07 statecode_AZ 0.12 

statecode_NE 0.07 property_type_U 0.10 

statecode_MD 0.06 statecode_OK 0.09 

statecode_TX 0.06 statecode_IL 0.08 

statecode_VT 0.06 gse_eligible_flag_2 0.08 

statecode_FL 0.05 statecode_IN 0.08 

documentation_type_2 0.05 statecode_NV 0.07 

statecode_OH 0.05 occupancy_type_3 0.07 

statecode_AL 0.05 statecode_NJ 0.06 

statecode_LA 0.05 statecode_MI 0.05 

gse_eligible_flag_0 0.04 statecode_CT 0.05 

statecode_ID 0.04 statecode_WI 0.05 

statecode_IN 0.03 statecode_MN 0.04 

statecode_AK 0.03 statecode_NC 0.04 

occupancy_type_1 0.03 statecode_TX 0.04 

statecode_MO 0.03 channel_9 0.04 

statecode_MT 0.03 statecode_NE 0.03 

statecode_NJ 0.03 property_type_1 0.03 

gse_eligible_flag_U 0.03 statecode_GA 0.03 

property_type_U 0.03 statecode_MO 0.02 
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Variable contributions for linear models for underwriting for the entire U.S. for the best 
Unconstrained and Constrained models 

Unconstrained Constrained 

Variable Contribution (%) Variable Contribution 
(%) 

fico 58.87 fico 56.66 

original_ltv 20.06 original_ltv 17.41 

back_end_ratio 5.14 back_end_ratio 4.69 

appraised_value 2.70 channel_D 2.18 

occupancy_type_U 2.12 payment_frequency_4 1.85 

channel_D 1.62 property_type_2 1.69 

payment_frequency_4 1.03 channel_1 1.26 

property_type_2 0.96 channel_2 1.12 

channel_2 0.72 appraised_value 1.09 

statecode_CA 0.66 number_of_units 0.95 

coapplicant_present 0.55 statecode_OK 0.89 

channel_U 0.46 property_type_U 0.74 

payment_frequency_U 0.45 statecode_CA 0.74 

channel_9 0.43 occupancy_type_U 0.71 

statecode_CO 0.40 gse_eligible_flag_0 0.68 

gse_eligible_flag_2 0.33 combined_ltv_at_origination 0.68 

statecode_NV 0.30 channel_U 0.63 

io_flag_U 0.20 statecode_IL 0.53 

combined_ltv_at_origination 0.19 statecode_IN 0.52 

statecode_MT 0.19 coapplicant_present 0.46 

statecode_AZ 0.18 channel_9 0.43 

statecode_WA 0.16 statecode_NC 0.31 

property_type_M 0.15 product_type_category_U 0.28 

statecode_MN 0.14 statecode_ND 0.26 

channel_1 0.12 statecode_AZ 0.22 

statecode_MD 0.12 statecode_LA 0.22 
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Unconstrained Constrained 

Variable Contribution (%) Variable Contribution 
(%) 

occupancy_type_2 0.12 statecode_NE 0.21 

statecode_TX 0.09 payment_frequency_U 0.19 

statecode_CT 0.08 statecode_OH 0.19 

statecode_NY 0.08 statecode_SD 0.18 

statecode_AL 0.08 property_type_1 0.18 

statecode_GA 0.08 occupancy_type_1 0.13 

statecode_NC 0.08 statecode_OR 0.12 

occupancy_type_1 0.07 statecode_ME 0.11 

statecode_NE 0.06 statecode_VA 0.10 

property_type_5 0.06 statecode_AR 0.10 

property_type_4 0.06 property_type_4 0.10 

statecode_OR 0.06 occupancy_type_3 0.10 

io_flag_N 0.06 io_flag_N 0.10 

statecode_MA 0.05 statecode_MN 0.10 

statecode_AR 0.05 statecode_NJ 0.09 

statecode_FL 0.05 statecode_NM 0.08 

statecode_LA 0.05 statecode_AK 0.07 

statecode_MO 0.04 statecode_MD 0.07 

statecode_VT 0.04 statecode_AL 0.06 

statecode_ID 0.04 statecode_KS 0.05 

statecode_IN 0.04 statecode_MA 0.05 

property_type_U 0.03 statecode_GA 0.05 
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Variable contributions for nonlinear models for underwriting for LA County 
Unconstrained Constrained 

Variable 
Contribution 
(%) Variable 

Contribution 
(%) 

fico 51.18 fico 49.16 

original_ltv 21.73 original_ltv 12.09 

occupancy_type_U 4.31 number_of_units 6.63 

appraised_value 3.70 back_end_ratio 4.27 

back_end_ratio 3.34 gse_eligible_flag_2 3.40 

coapplicant_present 2.72 occupancy_type_U 3.27 

gse_eligible_flag_1 2.34 property_type_4 3.14 

channel_D 1.90 appraised_value 3.13 

gse_eligible_flag_0 1.44 channel_2 3.10 

documentation_type_2 1.27 property_type_1 2.51 

channel_2 1.21 payment_frequency_4 1.97 

combined_ltv_at_origination 1.15 product_type_category_A 1.75 

product_type_category_A 0.60 gse_eligible_flag_1 1.38 

channel_9 0.44 occupancy_type_1 0.53 

io_flag_U 0.40 channel_D 0.49 

channel_1 0.36 payment_frequency_U 0.39 

channel_U 0.34 property_type_2 0.37 

property_type_6 0.31 coapplicant_present 0.35 

property_type_1 0.30 occupancy_type_3 0.34 

property_type_4 0.19 io_flag_U 0.31 

payment_frequency_U 0.17 gse_eligible_flag_0 0.28 

io_flag_N 0.11 property_type_6 0.22 

payment_frequency_4 0.11 documentation_type_1 0.18 

gse_eligible_flag_2 0.08 combined_ltv_at_origination 0.17 

documentation_type_U 0.08 product_type_category_F 0.15 

number_of_units 0.07 documentation_type_U 0.13 

property_type_2 0.06 property_type_U 0.07 
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Unconstrained Constrained 

Variable Contribution 
(%) 

Variable Contribution 
(%) 

gse_eligible_flag_U 0.04 channel_U 0.06 

product_type_category_F 0.02 io_flag_N 0.06 

io_flag_Y 0.02 channel_1 0.03 

channel_3 0.01 property_type_5 0.03 

occupancy_type_1 0.01 io_flag_Y 0.01 

property_type_U 0.01 documentation_type_2 0.01 

documentation_type_1 0.01 occupancy_type_2 0.00 

io_term 0.01 product_type_category_U 0.00 

occupancy_type_2 0.00 product_type_category_nan 0.00 

payment_frequency_2 0.00 io_flag_nan 0.00 

statecode_CA 0.00 documentation_type_nan 0.00 

statecode_nan 0.00 gse_eligible_flag_U 0.00 

product_type_category_nan 0.00 channel_3 0.00 

product_type_category_U 0.00 channel_nan 0.00 

io_flag_nan 0.00 channel_9 0.00 

documentation_type_nan 0.00 property_type_3 0.00 

property_type_3 0.00 io_term 0.00 

property_type_5 0.00 payment_frequency_nan 0.00 

occupancy_type_nan 0.00 payment_frequency_2 0.00 
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Variable contributions for linear models for underwriting for LA County 
Unconstrained Constrained 

Variable 
Contribution 
(%) Variable 

Contribution 
(%) 

fico 50.23 fico 55.72 

original_ltv 18.30 original_ltv 21.58 

appraised_value 5.95 channel_1 2.60 

back_end_ratio 5.06 appraised_value 2.34 

occupancy_type_U 4.57 occupancy_type_1 2.18 

gse_eligible_flag_1 4.47 occupancy_type_U 2.14 

channel_D 1.77 gse_eligible_flag_1 1.98 

payment_frequency_4 1.59 back_end_ratio 1.89 

coapplicant_present 1.45 documentation_type_2 1.73 

documentation_type_2 1.10 channel_D 1.09 

channel_1 0.96 gse_eligible_flag_0 1.02 

combined_ltv_at_origination 0.78 channel_2 0.99 

channel_9 0.56 property_type_2 0.81 

channel_2 0.54 property_type_1 0.75 

gse_eligible_flag_0 0.40 coapplicant_present 0.70 

property_type_1 0.31 product_type_category_F 0.55 

property_type_Z 0.28 payment_frequency_U 0.29 

channel_U 0.25 property_type_4 0.25 

number_of_units 0.22 property_type_6 0.24 

io_flag_U 0.22 occupancy_type_3 0.20 

property_type_6 0.18 product_type_category_A 0.19 

io_flag_N 0.15 payment_frequency_4 0.19 

occupancy_type_1 0.13 channel_U 0.14 

property_type_2 0.12 property_type_U 0.11 

documentation_type_1 0.11 combined_ltv_at_origination 0.10 

io_flag_Y 0.08 documentation_type_1 0.10 

documentation_type_U 0.06 number_of_units 0.08 
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gse_eligible_flag_2 0.05 io_flag_N 0.03 

product_type_category_A 0.05 gse_eligible_flag_2 0.01 

property_type_U 0.04 payment_frequency_2 0.00 

payment_frequency_U 0.01 gse_eligible_flag_U 0.00 

occupancy_type_2 0.01 io_term 0.00 

gse_eligible_flag_U 0.01 statecode_CA 0.00 

documentation_type_nan 0.00 product_type_category_nan 0.00 

product_type_category_F 0.00 product_type_category_U 0.00 

io_flag_nan 0.00 statecode_nan 0.00 

product_type_category_nan 0.00 property_type_3 0.00 

statecode_CA 0.00 io_flag_nan 0.00 

io_term 0.00 io_flag_Y 0.00 

product_type_category_U 0.00 io_flag_U 0.00 

channel_nan 0.00 documentation_type_nan 0.00 

statecode_nan 0.00 occupancy_type_nan 0.00 

property_type_nan 0.00 documentation_type_U 0.00 

property_type_3 0.00 property_type_5 0.00 

property_type_4 0.00 property_type_7 0.00 

channel_3 0.00 channel_nan 0.00 

property_type_5 0.00 property_type_M 0.00 

payment_frequency_nan 0.00 property_type_Z 0.00 
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Variable contributions for nonlinear models for pricing for the entire U.S. 
Unconstrained Constrained 

Variable Contribution (%) Variable Contribution 
(%) 

back_end_ratio 17.84 back_end_ratio 21.80 

product_type_category_A 16.71 appraised_value 15.61 

channel_D 12.49 payment_frequency_4 13.40 

channel_2 7.72 fico 12.95 

fico 7.47 channel_2 8.00 

coapplicant_present 6.54 coapplicant_present 5.17 

occupancy_type_3 4.76 occupancy_type_1 4.00 

appraised_value 4.62 product_type_category_A 3.83 

product_type_category_F 4.19 channel_9 3.39 

number_of_units 4.06 number_of_units 2.94 

gse_eligible_flag_1 2.42 property_type_5 2.54 

combined_ltv_at_origination 2.21 payment_frequency_U 1.85 

gse_eligible_flag_0 1.97 statecode_MO 1.22 

occupancy_type_1 1.32 product_type_category_F 0.78 

statecode_MN 0.98 gse_eligible_flag_1 0.65 

property_type_6 0.95 occupancy_type_2 0.54 

statecode_MO 0.84 statecode_PA 0.44 

statecode_CA 0.75 statecode_MN 0.33 

original_ltv 0.41 original_ltv 0.32 

payment_frequency_U 0.35 statecode_AZ 0.24 

statecode_NC 0.25 property_type_nan 0.00 

channel_1 0.25 occupancy_type_nan 0.00 

statecode_IA 0.24 occupancy_type_U 0.00 

statecode_MD 0.23 occupancy_type_3 0.00 

statecode_OH 0.22 gse_eligible_flag_U 0.00 

channel_U 0.16 product_type_category_nan 0.00 

payment_frequency_4 0.04 property_type_Z 0.00 
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Unconstrained Constrained 
Variable Contribution (%) Variable Contribution 

(%) 

documentation_type_1 0.01 payment_frequency_2 0.00 

statecode_AZ 0.00 property_type_M 0.00 

io_flag_nan 0.00 property_type_7 0.00 

occupancy_type_2 0.00 property_type_6 0.00 

gse_eligible_flag_2 0.00 property_type_4 0.00 

property_type_nan 0.00 property_type_3 0.00 

property_type_Z 0.00 property_type_2 0.00 

io_flag_N 0.00 property_type_1 0.00 

property_type_U 0.00 property_type_U 0.00 

property_type_M 0.00 channel_1 0.00 

occupancy_type_U 0.00 gse_eligible_flag_2 0.00 

property_type_7 0.00 payment_frequency_nan 0.00 

product_type_category_nan 0.00 product_type_category_U 0.00 

property_type_5 0.00 gse_eligible_flag_0 0.00 

property_type_4 0.00 io_flag_nan 0.00 

property_type_3 0.00 io_flag_Y 0.00 

product_type_category_U 0.00 io_flag_U 0.00 

io_flag_Y 0.00 io_flag_N 0.00 

occupancy_type_nan 0.00 documentation_type_nan 0.00 

payment_frequency_2 0.00 documentation_type_U 0.00 

documentation_type_nan 0.00 documentation_type_3 0.00 
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Variable contributions for linear models for pricing for the entire U.S. 
Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

appraised_value 24.25 fico 30.13 

channel_D 8.40 occupancy_type_3 17.07 

channel_1 6.26 property_type_5 6.10 

statecode_NJ 6.11 appraised_value 6.05 

back_end_ratio 6.09 occupancy_type_1 5.25 

fico 5.58 property_type_6 4.03 

gse_eligible_flag_0 4.97 channel_2 3.73 

statecode_NY 3.41 property_type_2 3.42 

statecode_CA 3.40 channel_D 3.17 

product_type_category_A 3.35 channel_9 2.69 

statecode_AZ 2.86 statecode_IN 2.04 

statecode_IN 2.80 gse_eligible_flag_2 1.73 

statecode_OK 2.44 statecode_KS 1.36 

channel_9 2.28 statecode_AL 1.31 

statecode_MI 1.73 product_type_category_A 1.23 

statecode_AL 1.71 product_type_category_F 1.20 

gse_eligible_flag_2 1.20 statecode_NV 1.09 

occupancy_type_1 1.06 statecode_AR 0.96 

property_type_3 0.91 statecode_NH 0.90 

documentation_type_2 0.88 combined_ltv_at_origination 0.88 

statecode_WI 0.82 documentation_type_U 0.85 

statecode_NV 0.81 statecode_GA 0.66 

statecode_FL 0.77 statecode_NM 0.62 

property_type_U 0.71 statecode_NJ 0.49 

statecode_MO 0.65 statecode_WA 0.44 

statecode_MD 0.64 number_of_units 0.42 

product_type_category_U 0.64 property_type_1 0.36 

channel_3 0.60 original_ltv 0.32 
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Unconstrained Constrained 

Variable Contribution (%) Variable Contribution (%) 

number_of_units 0.53 io_flag_Y 0.29 

statecode_NC 0.51 statecode_PA 0.24 

io_flag_Y 0.47 statecode_WI 0.19 

statecode_VA 0.39 statecode_MD 0.18 

channel_U 0.35 channel_3 0.13 

statecode_NE 0.33 statecode_ID 0.11 

statecode_TN 0.30 statecode_RI 0.10 

original_ltv 0.22 payment_frequency_4 0.07 

property_type_M 0.20 back_end_ratio 0.06 

gse_eligible_flag_U 0.18 property_type_U 0.04 

occupancy_type_2 0.17 property_type_M 0.04 

statecode_WV 0.17 property_type_4 0.03 

channel_2 0.14 gse_eligible_flag_0 0.02 

documentation_type_1 0.12 payment_frequency_2 0.00 

coapplicant_present 0.11 channel_1 0.00 

property_type_1 0.11 payment_frequency_U 0.00 

statecode_OR 0.10 payment_frequency_nan 0.00 

gse_eligible_flag_1 0.07 documentation_type_1 0.00 

statecode_GA 0.04 property_type_7 0.00 

io_term 0.04 channel_nan 0.00 
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Variable contributions for nonlinear models for pricing for LA County 
Unconstrained Constrained 

Variable Contribution 
(%) 

Variable Contributio
n (%) 

gse_eligible_flag_1 23.94 channel_D 24.29 

gse_eligible_flag_0 17.60 gse_eligible_flag_0 9.63 

channel_D 16.34 occupancy_type_1 8.84 

channel_2 7.66 occupancy_type_3 8.10 

product_type_category_A 5.87 fico 6.91 

fico 5.77 product_type_category_A 5.97 

occupancy_type_3 4.19 product_type_category_F 4.81 

occupancy_type_1 3.95 property_type_1 4.59 

original_ltv 3.06 number_of_units 4.43 

payment_frequency_4 2.24 property_type_U 3.58 

number_of_units 1.89 original_ltv 2.93 

product_type_category_F 1.79 channel_2 2.44 

property_type_2 1.68 property_type_2 1.88 

appraised_value 1.45 occupancy_type_2 1.75 

property_type_U 0.63 back_end_ratio 1.56 

documentation_type_U 0.51 channel_1 1.44 

documentation_type_1 0.48 documentation_type_U 1.12 

back_end_ratio 0.42 io_flag_N 1.10 

property_type_1 0.40 payment_frequency_U 1.01 

io_flag_U 0.05 coapplicant_present 0.97 

property_type_M 0.05 appraised_value 0.92 

combined_ltv_at_origination 0.03 channel_9 0.69 

documentation_type_2 0.00 gse_eligible_flag_2 0.59 

documentation_type_nan 0.00 payment_frequency_4 0.14 

io_flag_N 0.00 property_type_4 0.09 

gse_eligible_flag_U 0.00 property_type_6 0.06 

io_flag_Y 0.00 combined_ltv_at_origination 0.05 
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Unconstrained Constrained 
Variable Contribution 

(%) 
Variable Contributio

n (%) 

io_flag_nan 0.00 channel_3 0.03 

gse_eligible_flag_2 0.00 io_term 0.03 

channel_U 0.00 documentation_type_2 0.01 

product_type_category_U 0.00 documentation_type_1 0.01 

product_type_category_nan 0.00 gse_eligible_flag_U 0.01 

io_term 0.00 gse_eligible_flag_1 0.00 

channel_nan 0.00 product_type_category_nan 0.00 

channel_3 0.00 product_type_category_U 0.00 

coapplicant_present 0.00 property_type_3 0.00 

statecode_nan 0.00 statecode_CA 0.00 

property_type_4 0.00 statecode_nan 0.00 

property_type_5 0.00 io_flag_nan 0.00 

property_type_6 0.00 io_flag_Y 0.00 

property_type_7 0.00 io_flag_U 0.00 

property_type_Z 0.00 occupancy_type_U 0.00 

property_type_nan 0.00 documentation_type_nan 0.00 

occupancy_type_2 0.00 occupancy_type_nan 0.00 

occupancy_type_U 0.00 channel_nan 0.00 

channel_9 0.00 channel_U 0.00 

occupancy_type_nan 0.00 property_type_5 0.00 

payment_frequency_2 0.00 property_type_7 0.00 
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Variable contributions for linear models for pricing for LA County 
Unconstrained Constrained 

Variable Contribution (%) Variable 
Contribution 
(%) 

appraised_value 24.64 number_of_units 13.34 

gse_eligible_flag_0 18.76 channel_2 12.83 

occupancy_type_3 5.89 property_type_4 10.78 

gse_eligible_flag_2 5.24 channel_D 10.44 

original_ltv 4.82 product_type_category_F 6.58 

documentation_type_1 4.58 appraised_value 6.49 

product_type_category_A 4.50 back_end_ratio 5.21 

io_flag_N 3.77 property_type_1 4.92 

gse_eligible_flag_1 3.73 occupancy_type_3 3.88 

channel_D 3.70 gse_eligible_flag_0 3.54 

occupancy_type_1 2.80 channel_1 3.17 

channel_1 2.59 property_type_U 2.73 

property_type_U 2.34 property_type_6 2.31 

fico 1.45 fico 2.18 

channel_9 1.32 occupancy_type_1 1.93 

property_type_5 1.16 occupancy_type_2 1.92 

channel_2 1.16 product_type_category_A 1.70 

payment_frequency_U 1.06 io_term 1.39 

gse_eligible_flag_U 0.82 combined_ltv_at_origination 1.17 

property_type_6 0.81 documentation_type_U 0.77 

payment_frequency_4 0.67 original_ltv 0.74 

combined_ltv_at_origination 0.56 property_type_2 0.44 

product_type_category_F 0.55 property_type_M 0.41 

channel_3 0.52 channel_3 0.38 

occupancy_type_2 0.51 documentation_type_1 0.34 

property_type_1 0.50 property_type_Z 0.26 

occupancy_type_U 0.49 payment_frequency_U 0.13 
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Unconstrained Constrained 

Variable Contribution (%) Variable Contribution 
(%) 

property_type_Z 0.33 property_type_5 0.01 

property_type_2 0.26 channel_U 0.00 

coapplicant_present 0.21 io_flag_nan 0.00 

channel_U 0.15 product_type_category_U 0.00 

back_end_ratio 0.07 io_flag_Y 0.00 

number_of_units 0.03 product_type_category_nan 0.00 

documentation_type_2 0.02 gse_eligible_flag_1 0.00 

payment_frequency_nan 0.00 io_flag_U 0.00 

io_flag_nan 0.00 gse_eligible_flag_2 0.00 

io_term 0.00 io_flag_N 0.00 

statecode_CA 0.00 gse_eligible_flag_U 0.00 

statecode_nan 0.00 documentation_type_nan 0.00 

property_type_3 0.00 payment_frequency_4 0.00 

product_type_category_nan 0.00 documentation_type_2 0.00 

product_type_category_U 0.00 channel_nan 0.00 

property_type_4 0.00 channel_9 0.00 

property_type_7 0.00 payment_frequency_nan 0.00 

io_flag_Y 0.00 payment_frequency_2 0.00 

payment_frequency_2 0.00 occupancy_type_nan 0.00 

io_flag_U 0.00 occupancy_type_U 0.00 

property_type_M 0.00 property_type_nan 0.00 
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 Glossary 
 

+ Adverse Impact Ratio (AIR): a measure often used to determine if members of a protected 
class are experiencing disparate outcomes on the basis of an underwriting decision. The 
AIR is the ratio between the approval rate of the protected class and the approval rate for 
the corresponding control class. 

+ Area under the receiver operator curve (AUC): The Area under the Receiver Operator 
Curve (AUC) is a measure of the accuracy of a yes/no machine learning score. It has a 
value between 0 and 1, where a value of one means a universally correct  predictor, a value 
of 0 means a universally wrong predictor, and a value of 0.5 means a useless predictor 
which is no better than random choice. 

+ Bayesian Improved Surname Geocoding (BISG): A method for estimating the race and 
ethnicity or sex of an individual from their full name and address using only publicly 
available data. 

+ Binary Cross Entropy Loss: The loss function which is used in logistic regression as well 
as in building most other yes/no classification machine learning models such as 
underwriting models. 

+ Boosted forest: A form of decision tree forest constructed using a boosting algorithm. In 
this document, that algorithm is Gradient Boosting 

+ Cross Entropy Loss: The generalization of the binary cross entropy loss function to multi-
category optimization such as credit line assignment models. 

+ Decision tree: A form of machine learning target in which the model output function is 
computed by making a series of ordered binary tests along the paths through a tree, and 
where the model output is associated with the sequence of tests has no remaining 
choices to be made. 

+ Disparate impact: A form of discrimination in which a facially neutral underwriting or 
pricing policy has a discriminatory outcome on members of a protected class. Like 
disparate treatment, disparate impact is forbidden under US anti-discrimination law. 

+ Disparate treatment: A form of discrimination in which underwriting or pricing policies or 
standards treat members of a protected class differently from members of a control 
class. 

+ Home Mortgage Disclosure Act (HMDA): The Home Mortgage Disclosure Act of 1975 
requires that certain institutions (mostly banks and credit unions) report certain data on 
all mortgage applications they receive, no matter the eventual disposition of those 
applications. These data are reported in Loan Application Records (LARs), which are then 

https://en.wikipedia.org/wiki/Disparate_impact#The_80%25_rule
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://files.consumerfinance.gov/f/201409_cfpb_report_proxy-methodology.pdf
https://en.wikipedia.org/wiki/Cross-entropy#Cross-entropy_loss_function_and_logistic_regression
https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Cross-entropy
https://en.wikipedia.org/wiki/Decision_tree_learning
https://www.occ.treas.gov/topics/consumers-and-communities/consumer-protection/fair-lending/index-fair-lending.html
https://www.occ.treas.gov/topics/consumers-and-communities/consumer-protection/fair-lending/index-fair-lending.html
https://en.wikipedia.org/wiki/Home_Mortgage_Disclosure_Act
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aggregated and anonymized. The resulting collection of anonymized records is released 
every year. 

+ Jensen-Shannon (JS) Divergence: The Jensen-Shannon divergence (JS divergence) is a 
measure of the difference between two probability distributions. It is non-negative and 
bounded above and is 0 only if the two distributions are identical. It is a symmetrized and 
normalized form of the KL divergence. It is used extensively in this paper as a term in a 
loss function which attempts to ensure that the distributions of the scores of two related 
groups are identical. 

+ Kullback-Leibler (KL) Divergence: The Kullback-Leibler divergence (KL divergence) is a 
measure of the difference between two probability distributions. Like the JS divergence 
or the PSI, it is always greater than or equal to zero, and zero only if the two distributions 
are identical. Unlike the JS divergence or the PSI, it is not symmetrical. Unlike the JS 
divergence, it is not bounded above.\ 

+ Loss function: Most machine learning algorithms work by minimizing the difference 
between a model’s output and a set of target values. This difference is measured using a 
loss function, usually a non-negative function of the model output and the corresponding 
target value. 

+ Mean difference (MD): The difference between the means of two distributions. The MD is 
often used as a measure of the disparity between the loan pricing between two different 
demographic classes.\ 

+ Mean squared error (MSE): The average of the squares of the differences between a 
model’s output on a given input and the corresponding target value. The MSE is the loss 
function most often used for regressions with continuous outputs, such as pricing 
decisions in lending. 

+ Neural network (NN): A machine learning model which consists of many ‘artificial 
neurons’ that accumulate the outputs of other artificial neurons, multiplying them by a set 
of constants or ‘weights’, having one of more ‘output neurons’ which constitute the model 
output(s). Neural networks can be trained using a standard algorithm called 
‘backpropagation’. 

+ One-hot encoding: A mechanism for transforming categorical inputs before using them 
as inputs to a machine learning model. In one-hot encoding, the single categorical input 
is transformed into a set of 0-1 inputs, each of which corresponds to one or more possible 
values of the input. Each value of the input is transformed into a vector of these new 
values in which the one which corresponds to the value of the input variable has value 1 
and all others have value 0. (One of these is ‘hot’, hence the name.) 

+ Population Stability Index (PSI): The Population Stability Index is a symmetrized form of 
the KL divergence. Like the KL divergence and the JS divergence, the PSI is a measure of 
the difference between two distributions. Like the KL divergence and the JS divergence, it 

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Symmetrised_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Symmetrised_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Loss_function
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/mean-difference/
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/One-hot#Machine_learning_and_statistics
https://scholarworks.wmich.edu/cgi/viewcontent.cgi?article=4249&context=dissertations#:~:text=The%20population%20stability%20index%20(PSI,model%20to%20the%20current%20population.
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Symmetrised_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Symmetrised_divergence
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is always greater than or equal to zero. Like the JS divergence, but unlike the KL 
divergence, the PSI is symmetric, non-negative, and zero only if the distributions are 
identical. Unlike the JS divergence, but like the KL divergence, the PSI is not bounded 
above. The PSI is often used in model risk analysis, particularly to measure the drift of 
input values, target values, or model scores over time. 

+ Protected class or protected group: In US law, discrimination in lending on the basis of 
race, ethnicity, sex, religion, veteran status, marital status, and several other criteria is 
forbidden. A protected class or protected group is a group of people who share one of 
these characteristics and who have experienced discrimination on the basis of that 
shared characteristic. (For instance, Black or African American mortgage applicants.) 

+ Shapley Additive Explanations (SHAP): A reinterpretation of Shapley values which unifies 
many forms of contribution assignment. The original authors of the SHAP papers 
maintain an open source implementation of the algorithm. 

+ Shapley value: Shapley values are a credit assignment algorithm derived from cooperative 
game theory. In machine learning, Shapley values are used to explain the contribution of 
individual variables to the outputs of a machine learning model. 

+ Standardized mean difference (SMD): The mean difference between two distributions 
standardized by the pooled standard deviation of the two distributions. Standardization 
corrects for the spread of the distributions, reducing the mean differences between 
distributions which are wide relative to those which are narrow. 

+ TreeSHAP: An efficient implementation of the SHAP algorithm for decision trees. 

+ XGBoost: An implementation of gradient boosting which efficiently and quickly produces 
accurate boosted forests with a wide variety of loss functions and input datasets. 
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https://christophm.github.io/interpretable-ml-book/shap.html
https://github.com/shap/shap
https://christophm.github.io/interpretable-ml-book/shapley.html#the-shapley-value-in-detail
https://en.wikipedia.org/wiki/Effect_size#Cohen's_d
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